Android Programming with Lazarus through Custom Drawn Interface
OK, so you've read that it's possible to write Android applications with Lazarus and Free Pascal. You go straight to the wiki,
follow the bunch of steps there and FAIL! And then you start grumbling
and doubting whether it's really possible or just a joke.
Listen up, dude. The Android support in FPC is still in development, and
a pure arm-android target has just been added a couple of months ago.
This target is available for those experienced enough with FPC
(bootstrapping the compiler, set options for building, etc.) and not
lazy to do the whole setup. Most problems come from those who don't read
and do the steps thoroughly, possibly skipping important part. So if
you're one of them, either change your behavior or wait until the
support is available in the stable release.
I will try to explain step by step setting up FPC trunk with arm-android
target support, followed by setting up Lazarus to support building
Android application. Note that it's all done on Linux (Kubuntu 13.04)
32-bit, but it should work for any supported host platforms.
First thing first, latest stable FPC
FPC is a bootstrapping compiler, and it's guaranteed that latest stable
version will be able to build trunk and next stable version. No
guarantee for older version or between revisions of trunk, and things
can be broken anytime on trunk. At this time of writing, latest stable
FPC is of version 2.6.2. So grab that one if yours is not.
Next, Android NDK
For arm-android target, FPC makes use of external assembler and linker provided by Android NDK.
Mine is still version r8e, but looking at the changelog version 9
should work just fine. Extract it anywhere you want, we will refer to
this location as {ndk.dir}. To be sure, right under {ndk.dir} there should be README.TXT and RELEASE.TXT.
Let's identify the tools we need:
- {ndk.dir}/toolchains/arm-linux-androideabi-4.4.3/prebuilt/linux-x86/bin/arm-linux-androideabi-as (assembler)
- {ndk.dir}/toolchains/arm-linux-androideabi-4.4.3/prebuilt/linux-x86/bin/arm-linux-androideabi-ld (linker)
If you want, you can change the part after /toolchains/ in case you want
to use androideabi 4.6 or 4.7. Look at the corresponding directory you
have in your {ndk.dir}.
Open up your fpc.cfg file, by default it should contain the line:
-XP$FPCTARGET-
Ensure you do it correctly by verifying the output of ls -l `which arm-android-<toolname>` (*nix only). It looks like this on my system (real directory replaced with {ndk.dir}):
$ ls -l `which arm-android-as`
lrwxrwxrwx 1 root root 120 Mar 8 2013 /usr/bin/arm-android-as -> {ndk.dir}/toolchains/arm-linux-androideabi-4.4.3/prebuilt/linux-x86/bin/arm-linux-androideabi-as
$ ls -l `which arm-android-ld`
lrwxrwxrwx 1 root root 120 Mar 8 2013 /usr/bin/arm-android-ld -> {ndk.dir}/toolchains/arm-linux-androideabi-4.4.3/prebuilt/linux-x86/bin/arm-linux-androideabi-ld
Try executing arm-android-as and arm-android-ld in terminal or command prompt to ensure it works.
Next, FPC trunk
Build FPC for arm-android target
make crossall OS_TARGET=android CPU_TARGET=arm CROSSOPT='-Cp<ARM Arch> -Cf<ARM VFP>'
<ARM Arch> defines the ARM architecture you want to compile for, my device is ARMv6, so I use -CpARMv6.
<ARM VFP> defines the Vector Floating Point unit you want to use for floating point calculation, for at least ARMv6, VFPv2 and VFPv3 are available. The default is to use soft-float, which is very slow as the calculation is performed by software. Since I seldom use floating point, soft-float is fine for me, so I don't pass any -Cf option.
If everything goes well, it's time to install. Execute the following (still in the same FPC trunk folder):
make crossinstall OS_TARGET=android CPU_TARGET=arm INSTALL_PREFIX=<directory of your choice>
Feel free to choose any directory you want, but ensure it fulfills the standard requirement (no space in the file path). I suggest installing to the same host FPC directory so you can easily share fpc.cfg. FPC directory structure is made such that it's possible to install cross compiler (and the respective units) in the same tree as the host compiler. The fpc driver can then be used to query which ppc[ross]XXX to call.
If everything goes well, test the compiler. Execute the following:
fpc -Parm -Tandroid
It should output something like:
Free Pascal Compiler version 2.7.1 [2013/09/21] for arm
Copyright (c) 1993-2013 by Florian Klaempfl and others
Fatal: No source file name in command line
Fatal: Compilation aborted
Error: /usr/bin/ppcrossarm returned an error exitcode
Next, Android SDK
Test AndroidLCL example, yay!
Go to your Lazarus installation directory (I will refer it as
{lazarus.dir} from now on) and open
examples/androidlcl/androidlcltest.lpi. Now open Project->Project
Options, ensure in Target Platform OS is set to android and CPU is set
to arm (or just pick the respective build mode). If upon FPC trunk
building you use -Cf option, specify the same option in Other. You might
need to also set it in Tools->Configure Build Lazarus dialog. Now
press the Run->Build menu. If you get:
Trying to use a unit which was compiled with a different FPU mode
Then you don't put the -Cf option correctly. Remember you will need to
put it for both your project (through Project Options dialog) and LCL
(and its dependencies, through Configure Build Lazarus).
If everything goes well, you will get android/libs/armeabi/liblclapp.so in the project folder.
Get Ant
Android SDK uses ant build tool for building apk, so you'll need to install it as well.
Build the APK
Go to android folder under androidlcl project folder, and open the build.xml. Inside, you will see 2 loadproperties and 1 property tags. These points to files you will need to edit to match your SDK installation. Mine is below:
<loadproperties srcFile="local.properties" />
<property file="ant.properties" />
<loadproperties srcFile="default.properties" />
local.properties contains the sdk.dir which you should fill with {sdk.dir} (actual value where you install it, of course).
default.properties contains the target android API level. The complete list can be seen here. Note that you have to install the respective SDK platform through Android SDK manager.
ant.properties contains key.store and key.alias which is required for
release version of your apk. For debug version, it's not required and
the apk builder utility will assign a debug key on its own.
If all set, execute:
ant debug
in android folder. The resulting .apk will be in android/bin folder named LCLExample-debug.apk. Install that and enjoy.
From this point forward, you can make use of androidlcl structure as a
template. General Java package structure and Android build system
knowledge will be required to change the package name.
No comments:
Post a Comment